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Compact methods are high accuracy finite-difference methods where the functions and 
their derivatives are considered as unknowns. Two methods are presented to eliminate 
the second-order derivatives in parabolic equations, while keeping the fourth-order accuracy 
and the tridiagonal nature of the schemes. A type of high accuracy additional boundary 
condition is also proposed, which is consistent with the high accuracy of the inner scheme 
and uses only values at interior and boundary nodes. Integration on nonregular meshes is 
also examined. 

INTRODUCTION 

The trend toward highly accurate numerical solutions of partial differential 
equations has recently led to a renewed interest in Hermitian methods where deri- 
vatives are treated as unknowns, not eliminated with the help of linear combination 
of the basic functions. Almost at the same time, and in rather different ways, Adam 
[l] and Hirsh [2], developing an idea of Kreiss [3], have studied the possibility of 
solving pde by Hermitian compact techniques, and have shown several advantages, 
and also some problems arising from their effective use. 

Over classical higher order methods, Hermitian approximations present the 
advantage of using less nodes (three instead of five) at each point of the computational 
grid. Moreover, the error in the discretization of the derivative is usually four to six 
times smaller than the error of classical highly accurate schemes of the same order. 
In this paper, two methods are presented to reduce the complexity and the compu- 
tational cost of the compact algorithms by eliminating the higher derivatives. Addi- 
tional boundary relations are derived in order to solve the set of linear equations 
generated by the implicit algorithms. These relations yield a third-order accuracy 
near the boundaries of the computational grid, which is compatible with the fourth- 
order accuracy at the inner points. The different methods and boundary conditions 
are used to solve the one-dimensional Burger’s equation and a two-dimensional 
convective-diffusive heat equation. The advantages of compact highly accurate 
methods over classical schemes are shown off, mainly for moderate and high Reynolds 
number. The problem of integration on a nonuniform computational grid is also 
treated. 
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1. PRINCIPLE OF COMPACT METHODS 

Let us consider the differential equation 

& = Lb, u,, %c ,...) 

where Lu is a differential operator of order n. The usual way of solving this equation 
by classical finite-difference methods is to approximate 

u, by 4 = wu~,,, - Q-l), 

u,, by &, = (1/~3(~,+1 + ui-1 - k), 

(1) 

(2) 

or by higher order approximations using more than three nodes. The principle of 
compact Hermitian methods is to keep ti, , ti,, as unknowns at each point of the 
computational grid. Of course, the approximations ti, , ii,, must be derived from U. 
A highly accurate way of computing these values is to solve the systems of Hermitian 
relations (Collatz [4]) 

“f*+, + 41i,k‘ + zg-, = (3/h)(@+1 - &>, (3) 

z&+, + lo&,, + zi;zi-l = (12/P)(z$+, + ti;-, - 22&k), (4) 

where k corresponds to a given time which can be either no or (n + 1) 7, and the 
A is assigned to the approximated values of U, u, , u,, ,.... For example, an algorithm 
solving the one-dimensional convective-diffusive heat equation 

could be 

Ut = -vu, + vu,, (5) 

fii”+1 = Gin - TVf& + Tva~,i (6) 

where z& and ti,, are yielded by the systems (3) and (4), here with k = n. If one 
wishes to use an implicit scheme of the Crank-Nicholson type, 

one has to add two sets of equations (3) and (4) with k = n + 1. The set of simul- 
taneous linear equations (7), (3), and (4) must be completed by boundary relations 
between 6, ii,, and li,, . Hirsh [2, 51 has extensively tested this method. 

If the computational grid has m nodes, 3m equations of 3m unknowns are to be 
solved. Even in this case, the Hermitian compact methods may be preferred to other 
highly accurate finite-difference schemes, because of their higher accuracy [q and 
the tridiagonal nature of the set of linear equations [l]. 
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2. ELIMINATION OF HIGHER DERIVATIVES 

For the sake of simplicity, only the case of second-order differential equations will 
be examined. 

Generally, second derivatives do not appear in boundary conditions. One can thus 
try to eliminate the tizzi’s in order to reduce the number of unknowns. This elimination 
is interesting only if the accuracy and the tridiagonal nature of the scheme are kept; 
it can be implicit or explicit. 

(a) Implicit elimination: One uses relations (4); then 

” 
u,, G u,, - (11240) h4~,,,,, (8) 

if one assumes that the error is evenly distributed. Adam [l] has used such an eli- 
mination for the solution of Burger’s equation 

ut+%?=wT,, (9) 

4, = 0, (10) 

u lo = 0. (11) 

Assuming that v is a function v(x), the numerical scheme is, after elimination of 
the linear combination (1/12)(~,,~+~ + lOz& + z&,~-,) at times n7 and (n + 1) T 

where the last term of the left-hand side is yielded by the elimination of 
(l/12)(ti~;;1 + lOli{Ll + zi,$z:,> and the last term of the right-hand side by the elimi- 
nation of (l/12)(2?& + lOCi&., + zZ&-, ). This system of equations is closed for the 
interior points with Eq. (3), where k = n or IZ + 1. 

Scheme (12) approximates Eq. (9) (divided by v) with an error 

1 
T2 Uttt + &=j (-4% + 3%Jmm). -- 

( v 12 (13) 

The former scheme is particularly useful when the first derivative is absent from the 
equation to be solved; then a fourth-order accuracy scheme with three nodes and 
only one set of unknowns is generated, even if the diffusion coefficient v is variable; 
the system of Eq. (12) can then be closed without the help of (3), saving computation 
time. 
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(b) Explicit elimination: One uses the fourth-order approximation of u,, : 

L!i = (2/~2)(u,+, + e-1 - 2f4) - ww(~,i+, - G-3 

then 
ti zz G-s Km + U/120) ~4%zzm, 

if one also assumes that the error is evenly distributed. 
The corresponding equations for the integration of (9) are: 

(14) 

(15) 

and (3). The error is 

((72/w ktt - (h4/72W+4wz + h2.L3. (17) 

A further example of this procedure is given in Section 4. 
When the first derivative appears, or when the diffusion coefficient is variable, 

and generally, every time the “implicit elimination scheme” does not degenerate 
into a very simple scheme as described above, the explicit elimination should be 
preferred, because it is easier to handle. 

Both schemes generate 2 m equations with 2 m unknowns (m Q’S and m Q’S). The 
computational effort is thus much less than that required in the previous schemes 
developed by Hirsh [2]. The elimination formulas are given here for a constant spatial 
step. On nonuniform grids, an equivalent of (4) can be found in [l] and an equivalent 
of (14) in the Appendix of this paper. 

3. ADDITIONAL BOUNDARY RELATIONS 

Equations like (3) close the system at all the interior points i, for i = 2,..., m - 1. 
Of course, they cannot be written for i = 1 or i = m. Boundary conditions for the 
basic function ZJ are generally written 

l-124 + s,u, = v, at x = x1 (i = l), (18) 

r,u + s,u, = V, at x = x, (i = m). (19) 

There lacks one relationship at each boundary to solve the system completely. One 
can derive a relationship between tiI and fizl , eventually including ti, , ti,* , fi, , I& (and 
the analog for 6, and i&J, that preserves to some extent the high accuracy of the 
method. Then the tridiagonal character of the set of equations and the simplicity of 
the algorithm are retained. 
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The relationship at i = 1 is 

a,&, + b,ti,, + c2&, - (l/h)(m,z& + n,G, + r,a,> = 0. (20) 

It can not be identical to (3) because the system of equations would then be ill-con- 
ditioned. The same argument applies at i = tn. 

Thus, fourth-order accuracy cannot be achieved without losing the tridiagonal 
character of the scheme, because (3) is the only three-node relationship between a 
function and its first derivative with an error O(h4). However a O(h3)-boundary con- 
dition is consistent with a O(h4) inner scheme if the scheme is stable with regard to 
boundary conditions [7]. 

Since a condition such as (20) is a mere natural relationship between the function 
and its first derivative inside the integration domain, it cannot generate instability. 

A realization of (20) could be 

2&, + 4&, - (l/h)(-5ti, + 4ti, + zi3) = 0, (21) 

4&, + 2%, - (l/h)(-fi, - 4ri, + 5ti3) = 0, (22) 

and the analog at i = m 

41i 2,-, + 2&, - (l/h)(--ti,-2 - 4&-r + 52&J = 0, (23) 

2&_, + 4C& - ( l/h)(-51i,-Z + 42&-r + 62&J = 0. (24) 

In practice, very few, or no difference, appears in the results, whatever formulas 
are used. These relationships are O(h3) accurate. 

Another realization of (20) is 

G, + %, - (2/h)(UZ - ul) = 0 (25) 

and the analog at i = m 

uzm + u,m-l - (2/~)bn - kn-1) = 0 (26) 

which has been used by Adam [l]. This relationship is only O(h2) accurate. 

4. RESULTS OF NUMERICAL EXPERIMENTS 

Tests have been performed to check the validity of the different methods (exposed 
above) used to eliminate the second derivative and to yield an additional boundary 
condition. The test problems have been the resolution of Burger’s equation in four 
cases, and the resolution of a two-dimensional heat equation by an ADI Hermitian 
procedure. 
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In both cases, numerical results are compared to an analytical solution. Results 
are given in terms of the maximum error of the Burger solution (Tables I to IV) and 
in terms of an averaged error for the heat equation (Table V). 

TABLE I 

Maximum Error of the Numerical Solution of Burger’s Equationa 

t 7 = 0.01 h = r/20 t 7 = 0.01 h = a/40 

0.1 -0.3884 0.1 0.0764 
0.2 -0.2192 0.2 0.0062 
0.3 -0.0597 0.3 0.0021 
0.4 -0.0149 0.4 0.0007 
0.5 -0.0040 0.5 0.0003 

7 = 0.0025 h = 77/20 T = 0.0025 h = a/40 

0.1 -0.4754 0.1 -0.0159 
0.2 -0.2257 0.2 -0.0030 
0.3 -0.0605 0.3 0.0014 
0.4 -0.0149 0.4 0.0807 
0.5 -0.0042 0.5 0.0003 

a urnsx = 20, Y = 1. Implicit elimination of the second derivative; O(hs)-boundary condition. 

TABLE II 

Maximum Error of the Numerical Solution of Burger’s Equation” 

t T = 0.01 h = n/20 t 7 = 0.01 h = w/40 

0.1 -0.2490 0.1 0.0765 
0.2 -0.0690 0.2 0.0062 
0.3 -0.0332 0.3 0.0013 
0.4 -0.0122 0.4 0.0004 
0.5 -0.0048 0.5 0.0001 

0.1 
0.2 
0.3 
0.4 
0.5 

t- = 0.0025 h = ~120 

-0.2974 
-0.0762 
-0.0339 
-0.0122 
-0.0047 

0.1 
0.2 
0.3 
0.4 
0.5 

T = 0.0025 h = 77140 

-0.0158 
-0.0029 

0.0010 
0.0003 
0.0001 

allmax = 20, v = 1. Implicit elimination of the second derivative; O(hB)-boundary condition. 

581/24/1-z 
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TABLE III 

Maximum Error of the Numerical Solution of Burger’s Equation” 

t 7 = 0.01 h = a/20 t 7 = 0.01 h = n/40 

0.1 0.521 0.1 0.238 
0.2 0.379 0.2 0.097 
0.3 0.252 0.3 0.031 
0.4 0.134 0.4 0.010 
0.5 0.067 0.5 0.004 

0.1 
0.2 
0.3 
0.4 
0.5 

7 = 0.0025 h = 7~120 

0.425 
0.371 
0.251 
0.134 
0.067 

0.1 
0.2 
0.3 
0.4 
0.5 

T = 0.0025 h = r/40 

0.144 
0.090 
0.030 
0.010 
0.004 

“urnax = 20, Y = 1. Explicit elimination of the second derivative, O(h8)-boundary condition. 

TABLE IV 

Maximum Error of the Numerical Solution of Burger’s Equationa 

t -r = 0.01 h = 71120 

0.1 
0.2 
0.3 
0.4 
0.5 

0.1 
0.2 
0.3 
0.4 
0.5 

0.774 
0.327 
0.187 
0.108 
0.064 

7 = 0.0025 h = 77120 

0.670 
0.319 
0.186 
0.109 
0.064 

t 7 = 0.01 h = s/40 

0.1 
0.2 
0.3 
0.4 
0.5 

0.1 
0.2 
0.3 
0.4 
0.5 

0.208 
0.088 
0.039 
0.018 
0.009 

T = 0.0025 h = r+lO 

0.115 
0.081 
0.038 
0.018 
0.009 

au,,,= = 20, Y = 1. Explicit elimination of the second derivative; O(hs)-boundary condition, 
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TABLE V 

Average Error of the Numerical Solution of the Two-Dimensional Heat Equation” 

I h-1/20, T=o.ol,O(hy; h-1/20, T-0.004, O(P); h-1/40,T=o.O025, O(P); h-1120, -0.004, OW) 

0.4 1.27 x 1O-3 0.965 x lO-3 1.13 x 10-d 1.60 x 10-s 
0.8 1.26 x 1O-3 1.000 x IO-3 1.21 x 10-d 1.54 x 10-S 
1.2 1.00 x 10-a 0.835 x lO-3 1.00 x 10-b 1.24 x lo+’ 
1.6 0.80 x 1O-3 0.645 x 10-S 0.75 x lo-4 0.92 x lO-s 
2.0 0.59 x 10-a 0.473 x 10-s 0.55 x 10-a 0.67 x 1O-3 

TABLE VI 

Maximum Error of the Numerical Solution 
of Burger’s Equation” 

0.1 0.1919 
0.2 0.0139 
0.3 0.0105 
0.4 0.0058 
0.5 0.0021 

a urns= = 20, Y = 1, 7 = 0.002. Explicit 
elimination of the second derivative O(P)- 
boundary condition. Integration on a non- 
uniform grid. Total number of mesh points 
is 21. 

5. BURGER'S EQUATION 

Let us first look at the Burger equation and compare the effect of choosing one or 
another additional boundary condition. For the solutions of a highly nonlinear 
equation (urn&t = 0) = 20), the O(h2)-condition gives better results (Table II) 
than the O(h3)-condition (Table I). If one leaves aside the values of the error for 
t < .2, where there is an obvious combination of time and spatial errors (the error 
varies strongly when T decreases) to focus the attention on results for t 3 .3, one finds 
that the error decreases faster than h4 (by a factor of >24). This is probably due to the 
fact that the error is due to the higher order terms, which is important in the region 
where the gradients of the solution are steep (near x = 0). To clarify this problem, 
let us examine the error on a Fourier component A(w) eiwz of the solution. 

As the error introduced by (21) is 

(27) 



18 YVES ADAM 

the error on the elementary solution is, near x = 0: 

A(oJ)(-~hyico)4 + (l/30) h4(iW)5) = A(w) C&3(-& + (ih/30) w). (28) 

Both components of the error are always out of phase and can never cancel each 
other. Moreover, for wh > 5, i.e., above the seventh harmonic, the higher order 
part of the error dominates, at least if A(w) does not vanish rapidly when w - co; 
the error introduced by (25) is 

Qh2&m! - (l/Q) h3%!m!, + (l/W h4%xxm,, 

or, for an elementary solution 

(29) 

A(w) m3h2(-(i/6) - (l/12) wh + (i/40) w2h2). (30) 

In this expression, the first and third term are in phase and of opposite signs; they 
nearly balance each other. For wh N 6, they cancel each other. As a Fourier analysis 
of the solution shows that the Fourier coefficients A(w) are important up the tenth 
harmonic in the region near x = 0, relations (22) and (30) explain why the O(h2)- 
condition gives a better result than the O(h3)-condition. Further experiments (not 
reported here) performed on a smoother solution (urnaX (t = 0) = 10) have confirmed 
the validity of this analysis; the error behaved as predicted theoretically. 

Looking at the results of the explicit elimination methods, one sees that they are 
less accurate than those of the implicit elimination algorithm, that the convergence 
is between h2 and h3 for the O(h2)-condition, and between h3 and h4 for the O(h3)- 
condition. Here again, the higher order terms are important. 

6. HEAT EQUATION 

The two-dimensional heat equation does not exhibit such high order harmonics 
in its solution and the results confirm the theoretical computations. 

The numerical integration scheme of the equation 
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Here, only the explicit elimination has been used, because an implicit elimination 
would have required additional computations for rI&, and 2iznZ+1’2 (using (4)). 

The theoretical error is 

3-2 
n Uttt + Go (624 Q4, - 6OOU+, + 636~,~,, - ~OOV~UV~)~,,, 

+ & (--6OOU,u, + 624U,u, - 6OOv1u,, + 636v,u,,,),,,, . (34) 

Assuming perfect symmetry in x and y for simplification, the error becomes, for a 
typical elementary solution of (31) with wave number 

2rr w=-..-- 
L’ 

L = mh, 

2 
Eff = - T2Y3 

3 ( $- + w2) 

+ & (1224U (-$ + u~)~” + 1236~ (-& + w2)3j, 

while for the classical Peaceman Rachford scheme, 

2 
EpR = - 72v3 

3 ( -E + 02) 4v2 

+ g (4u (-g + W2)3’2 + v ($ + u)“). (36) 

Introducing the Reynolds number, R = UL/v the E’S become 

1 1 
E,=~T~V~(R~+ 16~-~)+~~ h4v (1224R(R2 + 167r2)5/2 + 1236(R” + 16?r2)s), 

(37) 

epR = ; T~v~(R~ + 167r2) + g4 (SR(R” + 167r2)3/2 + (R2 + 167~3~). (38) 

For high Reynolds numbers, i.e., in this case for R > 4~, then 

1 1 h4v 
EH es 6 r2v3R2 -I- 337 F R=, (39) 

(40) 
1 1 h2v 

CPR S 6 r2vSR2 + 24 L4 R4. 



20 YVES ADAM 

If one assumes that the spatial errors must be the same for both schemes, and that 
a typical time frequency of the phenomenon is f = v/L2, then: 

(E& = L f R6 
337 m4 ' (41) 

(+I& = 'L R4 24 n@ ’ (42) 

and, for the Hermitian method, 

for the PR method 
m = 0.233f 1/4R3/26--1/4 (43) 

m = 0.204f1J2R2d~2. w 
This means that the number of nodes in each direction must increase like R312 and 
R2, respectively, and like f l/4 and f lJ2 (f = l/T), respectively; so the steeper the time 
gradients, or the higher the Reynolds number, or the smaller the error, the more 
favorable the Hermitian compact method. Even for lower R, like in our numerical 
example, (R = 20, v = 0.05, L = 1, U = l), to get a 0.01 error, it takes m = 39 
for the Hermitian method, and m = 251 for the PR method). The total number of 
nodes would have a ratio 1 to 40, with a 1 to 15 ratio in computer time (because the 
tridiagonal scheme needs a little more computer time, refer to [l]). 

Results of the computations are shown in Table V. From the first and second 
columns, we can compute the time discretization error, introduce it in the third and 
fourth columns and compare the resulting spatial errors. For t = 0.4, the error with 
the O(h3)-condition is 9.07 x 10-4; the error with the O(h2)-condition is 15.4 x 10-4. 

Halving the spatial step with the O(h3)-condition gives a spatial error of 9.03 x 1O-5 
and a ratio of 10, indicating a convergence like /z~.~. Similar computations can be made 
for other values of t. Equivalent values of the error are obtained with the PR method 
using spatial steps four times smaller. 

7. INTEGRATION ON A NONUNIFORM GRID 

In some problems (for example, for boundary layer flows), it would be very useful 
to use nonuniform computational grids, i.e., a grid where the mesh can be refined 
or enlarged following the behavior of the solution. Most classical methods lose their 
accuracy on such grids; Hermitian compact methods, however, keep their good 
properties. Adam [l] shows that the approximation of U, with the help of a relation 
equivalent to (3) is O(h4), while the approximation of u,, with a relation equivalent 
to (4) is O(h3). It can easily be computed that the formula equivalent to (14), derived 
in the Appendix of this paper, is O(h3). Some numerical experiments have been 
performed using Burger’s equation. A striking example is given in Table VI. The 
method used explicit elimination, O(ha) boundary relation, and a grid in which the 
mesh was refined in the region of steep gradients and enlarged in smoother regions. 
For the same computational effort, the error is half of the error of the best method 
with a uniform step (Table II). 
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5. CONCLUSIONS 

From several test studies, it can be stated that Hermitian methods are promising 
highly accurate methods for the solution of parabolic partial differential equations. 
It has been shown in this paper that higher derivatives of the functions can easily 
be eliminated as linear combinations of the unknown functions and their first-order 
derivatives (treated as unknowns too), while keeping the fourth-order accuracy and 
the tridiagonal nature of the discrete approximation. A third-order additional 
boundary condition, using only the boundary and two internal points, has been 
proposed to close the system. Such a condition retains the tridiagonality of the solving 
system, is coherent with a fourth-order inner scheme, and requires no fictitious 
boundary point, preventing any instability originating from the boundary. Hermitian 
compact methods are also very accurate and easy to implement on nonuniform grids. 

APPENDIX 

The problem is to find an approximation of u,,* with the help of the values of 
ui and u,. , which should be the most accurate possible on irregular and regular meshes, 
using oniy three nodes, i.e., an approximation like 

,. 

Denoting: 

xi+1 - xi = yihp 

Xi - xi-1 = yi-lh, 

the coefficients are the solution of the system 

yi2 d-1 
2 2 Yi --Y&l 

yi3 Yi’ Yf-1 Yf-1 
6 6 2 2 

yi4 

24 + 

---- YL Yi3 Yi-1 3 

24 6 6 
5 

-5 
YLl Yi4 Y:-1 - - 
120 24 24 

bi 4% + 4, 

ei = -(di + ji) + yi-lci - yiai . 
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A simpler system arises when all the yi’s are equal to 1, i.e., on a regular mesh; 
then the system becomes 

and yields (14). 

1. Y. ADAM, A hermitian finite difference method for the solution of parabolic equations, Comp. 
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